skip to main content


Search for: All records

Creators/Authors contains: "Phillips, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many consumers depend on the contemporaneous growth of their food resources. For example,Tanytarsus gracilentusmidges feed on algae, and because midge generation time is much longer than that of algae, individual midges benefit not just from the standing stock but also from the growth of algae during their lifespans. This implies that an intermediate consumption rate maximizes midge somatic growth: low consumption rates constrain midge growth because they do not fully utilize the available food, whereas high consumption rates suppress algal biomass growth and consequently limit future food availability. An experiment manipulating midge presence and initial algal abundance showed that midges can suppress algal growth, as measured by changes in algal gross primary production (GPP). We also found a positive relationship between GPP and midge growth. A consumer–resource model fit to the experimental data showed a hump‐shaped relationship between midge consumption rates and their somatic growth. In the model, predicted midge somatic growth rates were only positively associated with GPP when their consumption rate was below the value that optimized midge growth. Therefore, midges did not overexploit algae in the experiment. This work highlights the balance that consumers which depend on contemporaneous resource growth might have to strike between short‐term growth and future food availability, and the benefits for consumers when they ‘manage' their resources well.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Quantifying temporal variation in demographic rates is a central goal of population ecology. In this study, we analyzed a multidecadal age-structured time series of Arctic char (Salvelinus alpinus) abundance in Lake Mývatn, Iceland, to infer the time-varying demographic response of the population to reduced harvest in the wake of the fishery’s collapse. Our analysis shows that while survival probability of adults increased following the alleviation of harvesting pressure, per capita recruitment consistently declined over most of the study period, until the final three years when it began to increase. The countervailing demographic trends resulted in only limited directional change in the total population size and population growth rate. Rather, the population dynamics were dominated by large interannual variability and a shift towards an older age distribution. Our results are indicative of a slow recovery of the population after its collapse, despite the rising number of adults following relaxed harvest. This underscores the potential for heterogeneous demographic responses to management efforts due to the complex ecological context in which such efforts take place.

     
    more » « less
  3. Abstract

    While climate warming is widely predicted to reduce body size of ectotherms, evidence for this trend is mixed. Body size depends not only on temperature but also on other factors, such as food quality and intraspecific competition. Because temperature trends or other long‐term environmental factors may affect population size and food sources, attributing trends in average body size to temperature requires the separation of potentially confounding effects. We evaluated trends in the body size of the midgeTanytarsus gracilentusand potential drivers (water temperature, population size, and food quality) between 1977 and 2015 at Lake Mývatn, Iceland. Although temperatures increased at Mývatn over this period, there was only a slight (non‐significant) decrease in midge adult body size, contrary to theoretical expectations. Using a state‐space model including multiple predictors, body size was negatively associated with both water temperature and midge population abundance, and it was positively associated with13C enrichment of midges (an indicator of favorable food conditions). The magnitude of these effects were similar, such that simultaneous changes in temperature, abundance, and carbon stable isotopic signature could counteract each other in the long‐term body size trend. Our results illustrate how multiple factors, all of which could be influenced by global change, interact to affect average ectotherm body size.

     
    more » « less
  4. Abstract

    Does information about how other people feel about COVID-19 vaccination affect immunization intentions? We conducted preregistered survey experiments in Great Britain (5,456 respondents across 3 survey waves from September 2020 to February 2021), Canada (1,315 respondents in February 2021), and the state of New Hampshire in the United States (1,315 respondents in January 2021). The experiments examine the effects of providing accurate public opinion information to people about either public support for COVID-19 vaccination (an injunctive norm) or public beliefs that the issue is contentious. Across all 3 countries, exposure to this information had minimal effects on vaccination intentions even among people who previously held inaccurate beliefs about support for COVID-19 vaccination or its perceived contentiousness. These results suggest that providing information on public opinion about COVID vaccination has limited additional effect on people’s behavioral intentions when public discussion of vaccine uptake and intentions is highly salient.

     
    more » « less
  5. Abstract The Pacific ocean-bottom seismometer (OBS) Research into Convecting Asthenosphere (ORCA) experiment deployed two 30-station seismic arrays between 2018 and 2020—a US contribution to the international PacificArray project. The “Young ORCA” array deployed on ∼40 Ma central Pacific seafloor had a ∼68% data recovery rate, whereas the “Old ORCA” array deployed on ∼120 Ma southwest Pacific seafloor had a ∼80% recovery rate. We detail here the seismic data quality, spectral characteristics, and engineering challenges of this experiment. We provide information to assist users of this dataset, including OBS orientations and tables of daily data quality for all channels. Preliminary analysis illustrates the utility of these data for surface- and body-wave seismic imaging. 
    more » « less
  6. Abstract

    Population cycles can be caused by consumer–resource interactions. Confirming the role of consumer–resource interactions, however, can be challenging due to an absence of data for the resource candidate. For example, interactions between midge larvae and benthic algae likely govern the high‐amplitude population fluctuations ofTanytarsus gracilentusin Lake Mývatn, Iceland, but there are no records of benthic resources concurrent with adult midge population counts. Here, we investigate consumer population dynamics using the carbon stable isotope signatures of archivedT. gracilentusspecimens collected from 1977 to 2015, under the assumption that midge δ13C values reflect those of resources they consumed as larvae. We used the time series for population abundance and δ13C to estimate interactions between midges and resources while accounting for measurement error and possible preservation effects on isotope values. Results were consistent with consumer–resource interactions: high δ13C values preceded peaks in the midge population, and δ13C values tended to decline after midges reached high abundance. One interpretation of this dynamic coupling is that midge isotope signatures reflect temporal variation in benthic algal δ13C values, which we expected to mirror primary production. Following from this explanation, high benthic production (enriched δ13C values) would contribute to increased midge abundance, and high midge abundance would result in declining benthic production (depleted δ13C values). An additional and related explanation is that midges deplete benthic algal abundance once they reach peak densities, causing midges to increase their relative reliance on other resources including detritus and associated microorganisms. Such a shift in resource use would be consistent with the subsequent decline in midge δ13C values. Our study adds evidence that midge–resource interactions driveT. gracilentusfluctuations and demonstrates a novel application of stable isotope time‐series data to understand consumer population dynamics.

     
    more » « less
  7. How structural segment boundaries modulate earthquake behavior is an important scientific and societal question, especially for the Wasatch fault zone (WFZ) where urban areas lie along multiple fault segments. The extent to which segment boundaries arrest ruptures, host moderate magnitude earthquakes, or transmit ruptures to adjacent fault segments is critical for understanding seismic hazard. To help address this outstanding issue, we conducted a paleoseismic investigation at the Traverse Ridge paleoseismic site (TR site) along the ∼7-km-long Fort Canyon segment boundary, which links the Provo (59 km) and Salt Lake City (40 km) segments of the WFZ. At the TR site, we logged two trenches which were cut across sub-parallel traces of the fault, separated by ∼175 m. Evidence from these exposures leads us to infer that at least 3 to 4 earthquakes have ruptured across the segment boundary in the Holocene. Radiocarbon dating of soil material developed below and above fault scarp colluvial packages and within a filled fissure constrains the age of the events. The most recent event ruptured the southern fault trace between 0.2 and 0.4 ka, the penultimate event ruptured the northern fault trace between 0.6 and 3.4 ka, and two prior events occurred between 1.4 and 6.2 ka (on the southern fault trace) and 7.2 and 8.1 ka (northern fault trace). Colluvial wedge heights of these events ranged from 0.7 to 1.2 m, indicating the segment boundary experiences surface ruptures with more than 1 m of vertical displacement. Given these estimates, we infer that these events were greater than Mw 6.7, with rupture extending across the entire segment boundary and portions of one or both adjacent fault segments. The Holocene recurrence of events at the TR site is lower than the closest paleoseismic sites at the adjacent fault segment endpoints. The contrasts in recurrence rates observed within 15 km of the Fort Canyon fault segment boundary may be explained conceptually by a leaky segment boundary model which permits spillover events, ruptures centered on the segment boundary, and segmented ruptures. The TR site demonstrates the utility of paleoseismology within segment boundaries which, through corroboration of displacement data, can demonstrate rupture connectivity between fault segments and test the validity of rupture models. 
    more » « less
  8. Abstract

    Ecosystem engineers have large impacts on the communities in which they live, and these impacts may feed back to populations of engineers themselves. In this study, we assessed the effect of ecosystem engineering on density‐dependent feedbacks for midges in Lake Mývatn, Iceland. The midge larvae reside in the sediment and build silk tubes that provide a substrate for algal growth, thereby elevating benthic primary production. Benthic algae are in turn the primary food source for the midge larvae, setting the stage for the effects of engineering to feed back to the midges themselves. Using a field mesocosm experiment manipulating larval midge densities, we found a generally positive but nonlinear relationship between density and benthic production. Furthermore, adult emergence increased with the primary production per midge larva. By combining these two relationships in a simple model, we found that the positive effect of midges on benthic production weakened negative density dependence at low to intermediate larval densities. However, this benefit disappeared at high densities when midge consumption of primary producers exceeded their positive effects on primary production through ecosystem engineering. Our results illustrate how ecosystem engineering can alter density‐dependent feedbacks for engineer populations.

     
    more » « less